Sample test question (from Fletch's textbook)

- **9.25)** A 3 kg block is attached to a vertical spring. The spring and mass are allowed to gently elongate until they reach equilibrium a distance .7 meters below their initial position. Once at equilibrium, the system is displaced an additional .4 meters. A stopwatch is then used to track the position of the mass as a function of time. The clock is started when the mass is at y = -.15 meters (relative to equilibrium) moving away from equilibrium. Knowing all this, what is:
 - a.) The spring constant?
 - **b.)** The oscillation's angular frequency?
 - **c.)** The oscillation's *amplitude*?
 - **d.)** The oscillation's frequency?
 - **e.)** The period?
 - **f.)** The *energy* of the system?
 - **g.)** The maximum velocity of the mass?
 - **h.)** The *position* when at the maximum velocity?
 - i.) The maximum acceleration of the mass?
 - j.) The position when at the maximum acceleration?
 - **k.)** A general *algebraic expression* for the position of the mass as a function of time?